Dfsm demand rate finite state machine


Dfsm(rules, n, randgen)



Similar to Pfsm, Dfsm implements a markov chain. Each state has a number of next states out of which one is randomly chosen.



rules - array in the format: 

[

[ entry states ],

item, [ next states ],

item, [ next states ],

...

end item

 ]


Each item can be a number, or a ugen, typically demand rate. If no end item is given, 0.0 is used as default.

 

n - number of items from each state to embed. If inf, they are embedded completely.


randgen - demand rate random number generator that should ouput values between 0.0 and 1.0. If a deterministic ugen is used, the choice of next states of the finite state machine can be controlled (i.e. 0 will allways choose the first, 1 always the last, else in between).






s.boot;


// random jumps

(

{

var a, b, trig = Impulse.kr(MouseX.kr(4, 100, 1));

a = Dfsm([[1], 1.5, [0, 1], 2.5, [0, 1]]);

b = Demand.kr(trig, 0, a).poll(trig);

SinOsc.ar(b * 200 + 300) * 0.1

}.play

);


// 2.5 may come after 1.5, but not the other way round.

(

{

var a, b, trig = Impulse.kr(MouseX.kr(4, 100, 1));

a = Dfsm([[0], 1.5, [0, 0, 1], 2.5, [1, 2], 0.5, [0]]);

b = Demand.kr(trig, 0, a).poll(trig);

SinOsc.ar(b * 200 + 300) * 0.1

}.play

);




// embed demand ugens, embed 2 of each, end with series of 4, 5, 3.

(

{

var a, n = 2, trig = Impulse.kr(MouseX.kr(4, 100, 1));

a = Dfsm([

[0], // entry states

Dseq([-2, -3], inf), [1], 

Dseq([1, 2, 1.5], inf), [0, 0, 0, 1, 2], 

Dseq([4, 5, 3], inf) // exit state

], n);

b = Demand.kr(trig, 0, a).poll(trig);

SinOsc.ar(b * 200 + 700) * 0.1

}.play

);



// direct audification

(

{

var a, b, pseudorandomness;

pseudorandomness = Dswitch1((0..1000).scramble / 1000, Dwhite(0, 1, inf)

* MouseY.kr(1, 1000, 1));

a = { 

var next = { { #[0, 1, 2, 3].choose } ! rrand(2, 5) };

var n = 2;

var d = Dfsm([

next.value, 

Dseq([0, 0, 1], inf), next.value,

Dseq([-1, 0].clipExtend(10.rand + 2), inf), next.value,

Dseq([1, 0, -1, 0].clipExtend(10.rand + 4), inf), next.value,

Dwhite(0, 1, inf), next.value,

0

], 

MouseX.kr(1, 1115, 1),

pseudorandomness

);

Pan2.ar(Duty.ar(SampleDur.ir, 0, d), LFNoise1.kr(1))

} ! 5;

a.sum * 0.1;

}.play

);