DbufTag demand rate tag system on a buffer


superclass: UGen




*new(bufnum, v, axiom, rules, recycle, mode)


bufnum a 1-channel buffer - when its size is reached, the process ends (dependent on mode). 

Theoretically, tag systems have an infinite tape size - practically, one may want to try different finite sizes.

Any number of tag processes may run concurrently on a single buffer, 

overwriting each other's output. While not very expressive, this may have interesting results.

other arguments and more explanations, see [Dtag]


Examples

// for all the following examples: allocate a buffer.

// deallocate later with : b.free


b = Buffer.alloc(s, 11125, 1);




// One of the examples by Emil Post

// directly listen to the tag system output (audification)

// when the tape is empty, the synth is freed (doneAction: 2)

(

var tag, index, axiom, rules, dt;

dt = SampleDur.ir; // play with audio rate

axiom = [1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1];

rules = [[1, 0], [1, 1, 0, 1]];

// axiom = axiom.scramble.keep(rrand(4, 16)).postln; // vary the axiom

v = 3;

tag = DbufTag(b.bufnum, v, axiom, rules);

Duty.ar(dt, 0, tag, doneAction: 2).dup * 0.1

}.play;

)


// the above as a frequency input for a sine oscillator

// repeating it after it ended, with varying deletion number

// a little pause is inserted at each repetition.

(

{

var tag, axiom, rules, index;

var freq = 15000;

var deletionNumber = MouseX.kr(1, 6);

axiom = [1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1];

rules = [[0, 1], [1, 1, 0, 1, 0]];

tag = DbufTag(b.bufnum, deletionNumber, axiom, rules);

tag = Dseq([tag, Dseq([0], freq * 0.3)], inf); // a 0.1 sec pause each overrun.


index = Duty.ar(1 / freq, Dseq([2], inf), tag, doneAction:2);

SinOsc.ar(index * 1200 + 400).dup * 0.1

}.play;

)


// recycling tag system.

(

var tag, axiom, rules, index;

var freq = 15000;

var recycle = MouseY.kr(1, 34);

var deletionNumber = MouseX.kr(1, 6);

axiom = [1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1];

rules = [[0, 1], [1, 1, 0, 1, 0]];

tag = DbufTag(b.bufnum, deletionNumber, axiom, rules, recycle, 4); // mode 4: post info

index = Duty.ar(1 / freq, 0, tag);

SinOsc.ar(index * 1200 + 400 * Rand(1, 1.6)).dup * 0.1

}.play;

)


// read some bit of the buffer

b.getn(0, 50, {|x| x.join.postln })



// Emil Post Big Beats

// many processes with different write speeds on one string.


(

SynthDef(\post, { |bufnum, out|

var tag, axiom, rules, index;

var freq = Rand(10000, 15000);

var deletionNumber = MouseX.kr(1, 6); // modulate deletion number

axiom = [1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1];

rules = [[0, 1], [1, 1, 0, 1, 0]];

tag = DbufTag(bufnum, deletionNumber, axiom, rules);


index = Duty.ar(1 / freq, 0, tag, doneAction:2);

Out.ar(

out,

Pan2.ar(index * 0.1, LFNoise1.kr(1))

)

}).send(s);

)



(

fork {

loop {

Synth(\post, [\bufnum, b.bufnum]);

rrand(0.3, 0.6).wait;

}

}

)




// slowly play the classic example system by Emil Post


(

b.zero; // empty the buffer.

var tag, trig;

var deletionNumber = 2;

var axiom = [1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1];

var rules = [[0, 0], [1, 1, 0, 1]];

tag = DbufTag(b.bufnum, deletionNumber, axiom, rules);

trig = Impulse.kr(1, 0.5);

SinOsc.ar(

Demand.kr(trig, 0, tag).poll(trig, "rule index")

* 100 + 300 + SinOsc.kr([4, 4.1], 0, 5)

) 

* 0.1 ! 2

}.play;


fork {

var deletionNumber = 2, tag = 0;

0.1.wait;

loop {

b.getn(0, 70, {|x|

x = x.copy.insert(tag, "|");

x.join.postln;

tag = tag + deletionNumber;

}); // post the first 70 symbols every second.

1.wait;

}

}


);



/*

1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1

    1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1

        1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1

            0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1

                1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0

                    0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1

                        0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0

                          1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0

                              1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1

                    ...

                    

              

creating the series: 1 1 1 0 1 0 0 1 1 ...                                  

*/